LRO/CRaTER Data Products

(Cosmic Ray Telescope for the Effects of Radiation)

Jody Wilson (UNH)
and the CRaTER Team
Jody.Wilson@unh.edu

http://crater-web.sr.unh.edu/ Jody.Wilson@unh.edu http://ppi.pds.nasa.gov/
Outline

• How CRaTER works & purpose
• “Raw” Data
• Data Products (ADR)
• CRaTER Website

 http://crater-web.sr.unh.edu

• NASA PDS

 http://ppi.pds.nasa.gov/
CRaTER Instrument

- Six silicon detectors arranged in 3 pairs
- Thin (1,3,5)+ thick (2,4,6) detectors increase dynamic range
- Separated by Tissue Equivalent Plastic (TEP)
- Usually D1 faces zenith, D6 faces nadir (Moon)
- Records each time a particle passes through at least one detector
Measure Lunar radiation environment

Ever-present isotropic Galactic Cosmic Rays

- Very high energy (relativistic) atomic nuclei from outside the solar system

Intermittent storms of Solar Energetic Particles

- Can have very high fluxes
- Less energy per particle than cosmic rays, but still energetic
Exploration & Science

- Radiation *dose* rates (expectations for future astronauts)
- Effects of *shielding* on radiation dose
- Radiation *effects* on lunar surface
- Long-term changes in cosmic ray background
- Details of solar particles (solar flares)

http://crater-web.sr.unh.edu/ Jody.Wilson@unh.edu http://ppi.pds.nasa.gov/
Shielding and Tissue Equivalent Plastic (TEP)

• Top two detectors (D1/D2): **skin or lense of eye** behind thin spacecraft wall

• Middle two detectors (D3/D4): **blood-forming organs**, shielded by 2” TEP

• Bottom two detectors (D5/D6) face the Moon ... even more shielded from Cosmic Rays, also detect radiation from the Moon

http://crater-web.sr.unh.edu/ Jody.Wilson@unh.edu http://ppi.pds.nasa.gov/
Linear Energy Transfer

- **LET**: Energy deposited per unit length by cosmic ray passing through matter

- LET higher for ions with higher charge

- LET increases as ion slows
“Raw” (L2) Data

- Large daily text files with one or more lines of data taken every second of the LRO mission
- SEC (secondary) files: second-by-second number of particle detections in each detector (D1-D6)
 - Also contain instrument settings (not shown here)
“Raw” (L2) Data

PRI (primary) files: LET deposited in each detector for every particle detected by CRaTER

- 20 to 40 particles per second during quiet times
- Very large files with 1000’s of particles per second during solar particle events
- Used to produce LET spectra and cross-plots

http://crater-web.sr.unh.edu/ Jody.Wilson@unh.edu http://ppi.pds.nasa.gov/
Primary L2 data file

(column headers in .FMT files)

<table>
<thead>
<tr>
<th>Date & Time</th>
<th>#</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>Energy</th>
<th>LET</th>
</tr>
</thead>
<tbody>
<tr>
<td>2009-10-27T00:00:00</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>52</td>
<td>1</td>
<td></td>
<td>0.1</td>
<td>811e-02</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>2</td>
<td>18</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td></td>
<td>0.1</td>
<td>570e-02</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>1</td>
<td>23</td>
<td>0</td>
<td>0</td>
<td>21</td>
<td></td>
<td>0.1</td>
<td>811e-02</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>1</td>
<td>0</td>
<td>23</td>
<td>0</td>
<td>21</td>
<td></td>
<td>0.1</td>
<td>570e-02</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>1</td>
<td>0</td>
<td>23</td>
<td>0</td>
<td>21</td>
<td></td>
<td>0.1</td>
<td>811e-02</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>2</td>
<td>0</td>
<td>34</td>
<td>0</td>
<td></td>
<td></td>
<td>0.1</td>
<td>570e-02</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>0</td>
<td>1</td>
<td>90</td>
<td>0</td>
<td></td>
<td></td>
<td>0.1</td>
<td>811e-02</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>2</td>
<td>0</td>
<td>10</td>
<td>0</td>
<td></td>
<td></td>
<td>0.1</td>
<td>570e-02</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>2</td>
<td>36</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td>0.1</td>
<td>811e-02</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>1</td>
<td>0</td>
<td>16</td>
<td>0</td>
<td></td>
<td></td>
<td>0.1</td>
<td>811e-02</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>1</td>
<td>0</td>
<td>25</td>
<td>0</td>
<td></td>
<td></td>
<td>0.1</td>
<td>811e-02</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>1</td>
<td>0</td>
<td>10</td>
<td>0</td>
<td></td>
<td></td>
<td>0.1</td>
<td>811e-02</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>1</td>
<td>0</td>
<td>31</td>
<td>0</td>
<td></td>
<td></td>
<td>0.1</td>
<td>811e-02</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>0</td>
<td>0</td>
<td>16</td>
<td>0</td>
<td></td>
<td></td>
<td>0.1</td>
<td>811e-02</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>1</td>
<td>32</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td>0.1</td>
<td>811e-02</td>
</tr>
<tr>
<td></td>
<td>17</td>
<td>2</td>
<td>0</td>
<td>21</td>
<td>0</td>
<td></td>
<td></td>
<td>0.1</td>
<td>811e-02</td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>7</td>
<td>132</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td>0.1</td>
<td>811e-02</td>
</tr>
<tr>
<td></td>
<td>19</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td></td>
<td></td>
<td>0.1</td>
<td>811e-02</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td></td>
<td></td>
<td>0.1</td>
<td>811e-02</td>
</tr>
<tr>
<td></td>
<td>21</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
<td>0.1</td>
<td>811e-02</td>
</tr>
<tr>
<td></td>
<td>23</td>
<td>2</td>
<td>79</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td>0.1</td>
<td>811e-02</td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>1</td>
<td>51</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td>0.1</td>
<td>811e-02</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>1</td>
<td>130</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td>0.1</td>
<td>811e-02</td>
</tr>
<tr>
<td></td>
<td>26</td>
<td>1</td>
<td>27</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td>0.1</td>
<td>811e-02</td>
</tr>
<tr>
<td></td>
<td>27</td>
<td>1</td>
<td>20</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td>0.1</td>
<td>811e-02</td>
</tr>
<tr>
<td></td>
<td>28</td>
<td>1</td>
<td>32</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td>0.1</td>
<td>811e-02</td>
</tr>
<tr>
<td></td>
<td>29</td>
<td>1</td>
<td>0</td>
<td>12</td>
<td>0</td>
<td></td>
<td></td>
<td>0.1</td>
<td>811e-02</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>2</td>
<td>0</td>
<td>10</td>
<td>0</td>
<td></td>
<td></td>
<td>0.1</td>
<td>811e-02</td>
</tr>
<tr>
<td></td>
<td>31</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td>0.1</td>
<td>811e-02</td>
</tr>
<tr>
<td></td>
<td>32</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td>0.1</td>
<td>811e-02</td>
</tr>
<tr>
<td></td>
<td>33</td>
<td>1</td>
<td>177</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td>0.1</td>
<td>811e-02</td>
</tr>
<tr>
<td></td>
<td>34</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td></td>
<td></td>
<td>0.1</td>
<td>811e-02</td>
</tr>
<tr>
<td></td>
<td>35</td>
<td>1</td>
<td>21</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>0.1</td>
<td>811e-02</td>
</tr>
<tr>
<td></td>
<td>36</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
<td>0.1</td>
<td>811e-02</td>
</tr>
<tr>
<td></td>
<td>37</td>
<td>1</td>
<td>90</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td>0.1</td>
<td>811e-02</td>
</tr>
<tr>
<td></td>
<td>38</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
<td>0.1</td>
<td>811e-02</td>
</tr>
<tr>
<td></td>
<td>39</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
<td>0.1</td>
<td>811e-02</td>
</tr>
<tr>
<td></td>
<td>40</td>
<td>1</td>
<td>15</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td>0.1</td>
<td>811e-02</td>
</tr>
<tr>
<td></td>
<td>41</td>
<td>1</td>
<td>35</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td>0.1</td>
<td>811e-02</td>
</tr>
<tr>
<td></td>
<td>42</td>
<td>1</td>
<td>20</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>0.1</td>
<td>811e-02</td>
</tr>
<tr>
<td></td>
<td>43</td>
<td>1</td>
<td>24</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td>0.1</td>
<td>811e-02</td>
</tr>
<tr>
<td></td>
<td>44</td>
<td>1</td>
<td>0</td>
<td>11</td>
<td>0</td>
<td></td>
<td></td>
<td>0.1</td>
<td>811e-02</td>
</tr>
<tr>
<td></td>
<td>45</td>
<td>2</td>
<td>0</td>
<td>148</td>
<td></td>
<td></td>
<td></td>
<td>0.1</td>
<td>811e-02</td>
</tr>
<tr>
<td></td>
<td>46</td>
<td>1</td>
<td>0</td>
<td>18</td>
<td>0</td>
<td></td>
<td></td>
<td>0.1</td>
<td>811e-02</td>
</tr>
<tr>
<td></td>
<td>47</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
<td>0.1</td>
<td>811e-02</td>
</tr>
<tr>
<td></td>
<td>48</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
<td>0.1</td>
<td>811e-02</td>
</tr>
<tr>
<td></td>
<td>49</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
<td>0.1</td>
<td>811e-02</td>
</tr>
</tbody>
</table>
Data Products Flow Chart

Particle-by-particle LET L2 Primary (PRI) Data

LET Spectra
Particle flux per LET energy bin
Integrated over time

Dose Rates
Energy Deposited per unit Mass
Integrated over all energies

Cross-plots = 2D LET Spectra

Dose Equivalent Rates
Linear Energy Transfer Spectra (LET)

- **LET**: Energy deposited per unit length by cosmic ray passing through matter

- **LET spectrum**: particle flux per LET energy bin
 - Integrated over time
 - Shows peaks (MIPs) from different elements in cosmic ray population

http://crater-web.sr.unh.edu/ Jody.Wilson@unh.edu http://ppi.pds.nasa.gov/
LET Cross-Plots

Cross-plots: Two-dimensional LET spectra

- Particle-by-particle LET in two separate detectors
- Nuclei lose energy in TEP, so they deposit unequal energies in detectors

Location on plot tells

- Direction of arrival
- Element/species

Critical component of lunar proton mapping
Radiation Dose & Dose Equivalent

Dose = total energy deposited per unit mass

1 gray = 1 J/kg

Dose Equivalent: like dose, but weighted by the effect of radiation type on biological tissue

• Non-linear function of LET

1 sievert ~ 1 gray
Dose limits for Astronauts

<table>
<thead>
<tr>
<th>Exposure Interval</th>
<th>30 days</th>
<th>1 year</th>
<th>Career¹</th>
<th>10yr career, 3% mortlt.²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blood frmng. organs</td>
<td>.25 Sv</td>
<td>.5 Sv</td>
<td>1-4</td>
<td>25yr woman</td>
</tr>
<tr>
<td>Eyes</td>
<td>1 Sv</td>
<td>2 Sv</td>
<td>4 Sv</td>
<td>.40 Sv</td>
</tr>
<tr>
<td>Skin</td>
<td>1.5 Sv</td>
<td>3 Sv</td>
<td>6 Sv</td>
<td>3 Sv</td>
</tr>
</tbody>
</table>

Hypothetical mission doses for solar min.

<table>
<thead>
<tr>
<th>Apollo-like</th>
<th>Moon base</th>
<th>Mars round-trip</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 week</td>
<td>6 months</td>
<td>2 years</td>
</tr>
<tr>
<td>.007 Sv</td>
<td>.13 Sv</td>
<td>1 Sv</td>
</tr>
<tr>
<td>✓ Manageable</td>
<td>✓ Manageable</td>
<td>○ Reaching/exceeding some limits ○ Avoid high dose events</td>
</tr>
</tbody>
</table>

1. NCRP Report No. 98 (1989)
Dose Rates during LRO Mission

- Variety of solar particle events – some of them dangerous to deep-space astronauts

- Declining cosmic ray background dose rate due to increasing solar activity, interplanetary B field

http://crater-web.sr.unh.edu/ Jody.Wilson@unh.edu http://ppi.pds.nasa.gov/
CRaTER Data Products
http://crater-web.sr.unh.edu/

Data
- Level 2 Data
 - Daily, Full (data files)
- Event Periods
 - SEP Events Visualization

Products
- Dose Rates
- Dose Equivalent
- Micro Dosimeter
- Linear Energy Spectra (LET)
- Cross Plot
- Lunar Albedo Maps
- Dielectric Charging (coming soon)
- Dose vs Depth (coming soon)

Ancillary Information
- Instrument
 - Housekeeping Data
 - HK Daily
- Ephemeris and Pointing
 - Daily LRO Ephemeris/CRaTER Telescope Pointing Vectors (data files)

Documentation
- Instrument Description
- Data Product Description

Publications, News and Media
- The CRaTER Special Issue of Space Weather
- Publications
- CRaTER Live Radio

Links
- PREDICCS
- UNH EOS
- NASA PDS PPI Node CRaTER Data Archive

Contact Us
- CRaTER PI, Nadia Schwaitron
- Legacy Data Product Website
- Webmaster for CRaTER Data Products

http://crater-web.sr.unh.edu/ Jody.Wilson@unh.edu http://ppi.pds.nasa.gov/
CRaTER Data Products

http://crater-web.sr.unh.edu/

- L2 Data, Dose rates, Equivalent Dose, Micro-dosimeter, LET spectra, and Cross-plots
- Image plots and ASCII text files
- Time ranges from 1 week to whole mission
 - Option to include only solar particle events (SEPs) or times with only galactic cosmic rays (GCRs)
- Event List Visualization Page allows for quick navigation to a particular solar particle event
Dose rate plot customizations

For Dose (energy in D1-D6), Dose Equivalent (biological), or Micro Dosimeter (simple single detector) rates

Notice the changing shielding effectiveness of the TEP
Dose Equivalent Rate text file

<table>
<thead>
<tr>
<th># Julian Date</th>
<th>Year</th>
<th>DOY</th>
<th>Year Fraction</th>
<th>H2O</th>
<th>All</th>
<th>GE</th>
<th>D1&2 dose rate</th>
<th>D3&4 dose rate</th>
<th>D5&6 dose rate</th>
<th>D1 dose rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>2457084.520833</td>
<td>2015</td>
<td>62</td>
<td>2015.1671804</td>
<td>1.333</td>
<td>0.711</td>
<td>1.000</td>
<td>8.5048e-02</td>
<td>7.9991e-02</td>
<td>6.6342e-02</td>
<td>7.7968e-02</td>
</tr>
<tr>
<td>2457084.562500</td>
<td>2015</td>
<td>62</td>
<td>2015.1672946</td>
<td>1.333</td>
<td>0.811</td>
<td>1.000</td>
<td>8.4584e-02</td>
<td>9.2122e-02</td>
<td>1.0877e-01</td>
<td>7.6912e-02</td>
</tr>
<tr>
<td>2457084.604166</td>
<td>2015</td>
<td>62</td>
<td>2015.1674087</td>
<td>1.333</td>
<td>0.711</td>
<td>1.000</td>
<td>7.6447e-02</td>
<td>7.8311e-02</td>
<td>7.4588e-02</td>
<td>6.9352e-02</td>
</tr>
<tr>
<td>2457084.649633</td>
<td>2015</td>
<td>62</td>
<td>2015.1675228</td>
<td>1.333</td>
<td>0.812</td>
<td>1.000</td>
<td>1.1000e-01</td>
<td>9.8261e-02</td>
<td>8.9816e-02</td>
<td>1.0241e-01</td>
</tr>
</tbody>
</table>
LET Spectra

Customize time frame, then click on image to get to element identification slider.
<table>
<thead>
<tr>
<th>#</th>
<th>LET</th>
<th>Flux</th>
<th>Flux Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>2.231900e-01</td>
<td>2.674200e+04</td>
<td>2.568700e+02</td>
</tr>
<tr>
<td>2</td>
<td>2.448700e-01</td>
<td>5.646900e+04</td>
<td>3.732700e+02</td>
</tr>
<tr>
<td>2</td>
<td>2.665500e-01</td>
<td>9.247100e+04</td>
<td>4.776700e+02</td>
</tr>
<tr>
<td>2</td>
<td>2.882300e-01</td>
<td>1.032600e+05</td>
<td>5.047500e+02</td>
</tr>
<tr>
<td>3</td>
<td>3.099100e-01</td>
<td>9.670800e+04</td>
<td>4.884800e+02</td>
</tr>
<tr>
<td>3</td>
<td>3.315900e-01</td>
<td>7.761500e+04</td>
<td>4.376200e+02</td>
</tr>
<tr>
<td>3</td>
<td>3.532700e-01</td>
<td>6.437200e+04</td>
<td>3.985400e+02</td>
</tr>
<tr>
<td>3</td>
<td>3.749500e-01</td>
<td>4.937800e+04</td>
<td>3.490500e+02</td>
</tr>
<tr>
<td>3</td>
<td>3.966300e-01</td>
<td>4.297700e+04</td>
<td>3.256400e+02</td>
</tr>
<tr>
<td>4</td>
<td>4.183100e-01</td>
<td>3.457100e+04</td>
<td>2.920600e+02</td>
</tr>
<tr>
<td>4</td>
<td>4.399900e-01</td>
<td>3.058100e+04</td>
<td>2.746900e+02</td>
</tr>
<tr>
<td>4</td>
<td>4.616700e-01</td>
<td>2.594500e+04</td>
<td>2.530100e+02</td>
</tr>
</tbody>
</table>
LET Cross-Plots

- Cross-plot images are down-sampled to fit on a computer screen – 2 zoom levels
- Use text files (2-D tables) for quantitative analysis

http://crater-web.sr.unh.edu/ Jody.Wilson@unh.edu http://ppi.pds.nasa.gov/
Cross-plot customizations

- Choose which detector pairs to plot
- Further option to require or exclude detection in 3rd detector pair
 - “Triple coincidence” particles are less numerous, but can be more confidently identified

http://crater-web.sr.unh.edu/
Jody.Wilson@unh.edu
http://ppi.pds.nasa.gov/
Cross-plot customizations

- Clicking on plot brings up element overlay

2083 day combined (GCR & SEP) cross plot data derived from 176483311 accumulated seconds from 2009-06-26 DOY:177 through 2015-03-09 DOY:068

http://crater-web.sr.unh.edu/ Jody.Wilson@unh.edu http://ppi.pds.nasa.gov/
Additional webpage info

• Plots, tables updated daily (M-F)
• Select from 1 to 4 plots (LET, cross-plot, dose) to show at one time
• General descriptions of plots and calibration notes in the “Learn More” tab
• Clicking on LET spectrum or cross-plot brings up element-identification slider

http://crater-web.sr.unh.edu/ Jody.Wilson@unh.edu http://ppi.pds.nasa.gov/
Data in NASA PDS
http://ppi.pds.nasa.gov/

- Data organized by year (2009-) then by Day-of-year (1-366)
- Directory for each day contains .FMT files with column names
- HK (housekeeping) files: instrument voltages, temperatures, crude pointing information
- Updated quarterly
Uses for Raw Data Files

• Plotting particles per second from SEC files using any plotting program: MS Excel, autoplot... (will be similar to dose rate plots)

• High resolution (time, energy) analysis of cosmic ray background or solar particle events (PRI files)

http://crater-web.sr.unh.edu/ Jody.Wilson@unh.edu http://ppi.pds.nasa.gov/
Notes on using raw data

• Don’t use data during “pulser sweeps”
• Check LRO/CRaTER’s orientation (HK files)
 – Usually oriented with D1-zenith, D6-nadir
• CRaTER changes to lower-sensitivity modes during high-flux solar particle events

http://crater-web.sr.unh.edu/ Jody.Wilson@unh.edu http://ppi.pds.nasa.gov/
Coming Soon

• Dose, LET and Cross-plot data products (LRO launch through 2014) about to be released on NASA PDS (in addition to UNH site)
• Updated maps of albedo protons from Moon
• New Data products
 – Electric charging of lunar surface vs. location & time (Talk on Thursday by Andrew Jordan)
 – Dose rates vs. depth in lunar soil

http://crater-web.sr.unh.edu/ Jody.Wilson@unh.edu http://ppi.pds.nasa.gov/