Lunar CRater Observation and Sensing Satellite

Dan Andrews, PM
Anthony Colaprete, PI

Ben Bussey
JHU/APL
The LCROSS Mission is a Lunar Kinetic Impactor employed to reveal the presence & nature of water ice on the Moon

- LCROSS Shepherding S/C (S-S/C) directs the 2000[kg] (4410[lb]) Centaur into a permanently-shadowed crater at 2.5[km/s] (1.56 [miles/s])
- ~200 metric tons (220 tons) *minimum* of regolith will be excavated, leaving a crater the size of ~1/3 of a football field, ~15 feet deep.
- The S-S/C decelerates, observing the Centaur ejecta cloud, and then enters the cloud using several instruments looking for water
- The S-S/C itself then becomes a 700[kg] (1,543[lb]) 'impactor' as well
- Lunar-orbital and Earth-based assets will also be able to study both clouds, (which may include LRO, Chandrayaan-1, HST, etc)
A fast, capable team:

- **ARC** provides the overall project management, systems engineering, risk management, and SMA for the mission
- **Northrop-Grumman** provides the S/C and S/C integration for this mission as well as launch systems integration support
- **ARC** provides the Science, Payloads, and Mission Ops for this mission
- **ARC, JPL, and GSFC** provides the Navigation and Mission Design role
- **JPL** is providing DSN services
- **KSC/LM** is providing Launch Vehicle services
- **JHU-APL** is providing avionics environmental testing
The LCROSS Science Team

<table>
<thead>
<tr>
<th>Name</th>
<th>Role</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tony Colaprete (ARC)</td>
<td>Principal Investigator</td>
</tr>
<tr>
<td>Geoff Briggs (ARC)</td>
<td>Deputy Principal Investigator</td>
</tr>
<tr>
<td>Kim Ennico (ARC)</td>
<td>Payload Scientist, I&T</td>
</tr>
<tr>
<td>Diane Wooden (ARC)</td>
<td>Observations/Analysis</td>
</tr>
<tr>
<td>Jennifer Heldmann (SETI)</td>
<td>Observation Coordinator</td>
</tr>
<tr>
<td>Tony Ricco (Stanford)</td>
<td>NIR Spectrometers</td>
</tr>
<tr>
<td>Luke Sollitt (NGST)</td>
<td>Imaging systems</td>
</tr>
<tr>
<td>Andy Christensen (NGST)</td>
<td>Science Requirements</td>
</tr>
<tr>
<td>Erik Asphaug (UCSC)</td>
<td>Impact Processes/Analysis</td>
</tr>
<tr>
<td>Don Korycansky (UCSC)</td>
<td>Impact Processes/Analysis</td>
</tr>
<tr>
<td>Peter Schultz (Brown)</td>
<td>Impact Processes/Analysis</td>
</tr>
<tr>
<td>Ben Bussey (JHU-APL)</td>
<td>LPRP Representative</td>
</tr>
</tbody>
</table>
Mission Measurement Objectives

The LCROSS mission rational:

- The nature of lunar polar hydrogen is one of the most important drivers to the long term Exploration architecture
- Need to understand Quantity, Form, and Distribution of the hydrogen
- The lunar water resource can be estimated from a minimal number of “ground-truths”
- Early and decisive information will aid future ESMD and LPRP missions

The LCROSS mission science goals:

- Confirm the presence or absence of water ice in a permanently shadowed region on the Moon
- Identify the form/state of hydrogen observed by at the lunar poles
- Quantify, if present, the amount of water in the lunar regolith, with respect to hydrogen concentrations
- Characterize the lunar regolith within a permanently shadowed crater on the Moon
9 Instruments:

1 Visible Context Camera
2 NIR Cameras
2 mid-IR Cameras
1 Visible Spectrometer
2 NIR Spectrometers
1 Total Visible Luminance Photometer
Nominal Impact Conditions:

- Target impact site: Shackleton Crater (-89.5 lat; 0 lon)
- Incident impact angle: ~75 deg
- Impact velocity: 2.5 km/sec
Impact Accuracy

- Impact accuracy better than 3km (3-sigma) expected for EDUS
- S-S/C can be directed to impact within 100m of EDUS and can retarget if necessary
The LCROSS Impact

The use of impacts to “survey” is a proven approach (e.g., Ranger, Apollo, Deep Impact)

The larger the amount of excavated material the greater the success:
• Larger – Avoids lateral heterogeneity
• Deeper – Avoids vertical (depth) heterogeneity
• More Ejecta – Increases observability

The total excavated amount scales ~linearly with impact mass

⇒ The larger the mass the more successful the impact experiment
The CBIEM summarizes the results of numerous impact models / assessments.

Used as the base to drive mission design and instrument selection.

Efforts continue to refine the model with an update due December, 2006.
Ejecta Mass Above an Altitude

![Graph showing the relationship between time after impact and ejecta mass at or above a certain altitude. The x-axis represents time after impact (in seconds) on a logarithmic scale, ranging from 1 to 1,000, and the y-axis represents ejecta mass (in kilograms) also on a logarithmic scale, ranging from 10 to 100,000. The graph includes data points for different altitudes, indicated by different symbols and colors.](image)
Stages of the Impact Process

Impact Flash and Vapor Cloud

Visible Component:
- Compaction / Intergrain Strain
- $\tau \sim 0.1$ sec
- $F \sim 0.001-1 \mu W m^{-2}$ (r=1000 km)

NIR Component:
- Blackbody Emission of Vapor Cloud
- $\tau \sim 1$ sec
- $F \sim 0.01-10$ mW m$^{-2}$ (r=1000 km)

Total energy sensitive to target properties such as material strength, density and water content.

Shape of the curve reflects the penetration depth, changes in material competence

A variety of visible and NIR spectral emissions relate to composition of target material and the fraction of the impactor which vaporizes
Ejecta Curtain Evolution
After the flash, target material is ejected outward on ballistic trajectories.

Visible Component:
- Curtain illuminated by sunlight
- Spectral brightness dependant on particle density, size, composition, shape
- Excitation / Fluorescence from species such as OH- and H₂O⁺

NIR Component:
- Curtain illuminated by sunlight
- Spectral brightness dependant on particle density, composition, size, shape

Mid-IR Component
- Curtain thermal emission
- Evolution sensitive to initial ejecta temperature (~100 K), particle size, volatile composition (water) and solar exposure
- Grains with radii <100 μm will warm within ~1-100 seconds to ~250 K after solar exposure.
- Spectral brightness dependant on particle density, composition, size, shape
Curtain Clearing / Crater Exposure
After ~5 minutes the bulk of the ejecta “settles” exposing the fresh crater

Mid-IR Component
- Remnant thermal emission from the crater (λ=6-15 \(\mu\)m)
- At 5 minutes post impact the crater temperature will be ~200 K, against a ~100 K background
- Crater temperature sensitive to water content
- Determination of crater size
Prospecting for Water

…using 6.5 Billion Joules

The Atlas Centaur Impact:
• Mass: ~2000 kg
• Velocity: 2.5 km/sec
• Angle: ~75 degrees

Minimize false positives by controlling EDUS contamination
• Total H/O bearing materials (e.g. LOX, H₂, H₂O in batteries) kept below reported and kept below 100 kg

Minimize false negatives by combining multiple detection methods

For a 2.5 km/sec, 2000 kg Impact, den = 300 kg/m³
Crater Diameter, Depth and Excavated Water
(Assumes a 10 cm desiccated Layer with uniform water mixing below)
9 Instruments:

1 Visible Context Camera:
 4 color, 6 degree FOV, <0.5 km
 resolution at T-10 min to S-S/C impact

2 NIR Cameras
 1.4 μm water ice band depth maps
 1 km resolution at T-10 min

2 mid-IR Cameras
 7 and 12.3 μm
 < 0.5 km resolution

1 Visible Spectrometer
 0.25 to 0.8 μm, ~0.002 μm resolution

2 NIR Spectrometers
 1.35 to 2.45 μm, 0.012 μm resolution,
 6° FOV

1 Total Visible Luminance Photometer
 Broadband from 0.6 – 1.2 μm, sample
 rate >1000 Hz, < nW NEP @ 1000 Hz
LCROSS Measurement Plan

Flash Photometry
- Total brightness in visible and NIR wavelengths

Visible Spectroscopy
- Visible emission (e.g., OH⁻, H₂O⁺)
- Surface and ejecta curtain reflectance/absorption

NIR Spectroscopy
- Surface and ejecta curtain reflectance/absorption

NIR Imaging
- Surface and ejecta curtain reflectance
- Band-depth maps (λ=1.4 μm)

Middle IR Imaging
- Surface and ejecta curtain temperatures
- Band-depth maps (λ=12 μm)

Visible Imaging
- Surface and ejecta curtain reflectance
Measurement / Technique Trace

<table>
<thead>
<tr>
<th>Measurement</th>
<th>Requirement</th>
<th>Flash Photometry</th>
<th>Visible Spectroscopy</th>
<th>NIR Spectroscopy</th>
<th>NIR Imaging</th>
<th>Mid-IR Imaging</th>
<th>Visible Imaging</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Water</td>
<td>PRJ4.1.1-.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Water Ice</td>
<td>PRJ4.1.1-.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Water Vapor</td>
<td>PRJ4.1.1-.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Organics</td>
<td>PRJ4.1.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hydrated Minerals</td>
<td>PRJ4.1.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Target Properties</td>
<td>PRJ4.1.5,4.1.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Curtain Morphology</td>
<td>PRJ4.1.8,4.1.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thermal Evolution</td>
<td>PRJ4.1.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mineralogy</td>
<td>PRJ4.1.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Particle Size</td>
<td>PRJ4.1.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Direct / Strong = Very direct measure with little modeling / assumption; highly sensitive
Indirect / Strong = Indirect measure with the goal removed by several steps; highly sensitive
Indirect / Weak = Indirect measure with the goal removed by several steps; moderately sensitive
Instrument Sensitivity Studies

Instrument sensitivity calculated using CBEIM, scattering calculations, and instrument performance models

LCROSS S-S/C Utilizes backscattered solar light to make water absorption measurements (Differential Absorption Spectroscopy)

Ejecta Curtain Scattering Assumptions (for NIR):
- Dominant Particle Radius = 45 mm
- Particle Density = 2000 kg/m³
- Single Scatter Albedo = 0.8
- Asymmetry Factor = 0.8
- q = 30°

Earth-Sun-Moon Geometry
30° > q > 160°

Backscatter Geometry from an Solar Illuminated Curtain
Impact Observations Support

Potential Supporting Platforms

- LRO
- International lunar missions
- Earth-orbiting
- Ground based

These platforms can provide unique vantage points and capabilities to monitor the impact event for water.

LCROSS provides support to these missions in the form of science rationale, impact expectations, observation recommendations, and technical data for observation (e.g., timing, direction for telescope pointing).

- Working directly with Facility/Instrument leads to plan observations (e.g., HST, SWAS, LRO, Keck).
- LCROSS Co-I has participated in the observation of SMART-1 to gain experience in observing the moon using large earth based telescope.
- Information will be provided through a web portal, modeled after the very successful Deep Impact mission.